Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster.

نویسندگان

  • C C Laurie-Ahlberg
  • L F Stam
چکیده

The purpose of the work reported here is to identify the molecular basis of the difference in level of expression between the polymorphic Slow and Fast alcohol dehydrogenase (Adh) alleles in Drosophila melanogaster. Previous studies have shown that Fast lines typically have a two- to threefold higher activity level than Slow lines and they also have a substantially higher level of ADH-protein (estimated immunologically). The results of a restriction fragment length polymorphism study in relation to ADH activity variation had previously suggested that the difference in Adh expression between allozymes might not be due entirely to the amino acid replacement substitution, but could be due in part to linkage disequilibrium with a regulatory site polymorphism. Here we describe an approach that makes use of P-element-mediated transformation in order to identify the nucleotide substitution(s) responsible for this difference in ADH level. This approach consists of generating recombinants in vitro between Adh region clones derived from a typical Slow/Fast pair of alleles and then testing for the effects of particular restriction fragments on expression in vivo by transformation. Using this approach, the effect on both ADH activity and ADH-protein level clearly maps to a 2.3-kb restriction fragment that includes all of the Adh coding sequence and some intron and 3' flanking sequence, but excludes all of the 5' flanking sequence of the distal (adult) transcriptional unit. Comparison of Kreitman's DNA sequences for this fragment from several Slow and Fast alleles showing the typical difference in activity level shows that only three nucleotide substitutions distinguish all Fast from all Slow alleles. Thus, it is likely that one or more of these substitutions causes the major difference in Adh expression between allozymic classes. One of these substitutions is, of course, the Slow/Fast amino acid replacement substitution (at 1490) while the other two are nearby third position silent substitutions (at 1443 and 1527). A quantitative analysis of variation among transformant stocks shows that the P-element transformation approach can be used to localize even relatively small effects on gene expression (on the order of 20%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-specific expression phenotypes of Hawaiian Drosophila Adh genes in Drosophila melanogaster transformants.

Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavio...

متن کامل

Kinetics and thermodynamics of ethanol oxidation catalyzed by genetic variants of the alcohol dehydrogenase from Drosophila melanogaster and D. simulans.

Four naturally occurring variants of the alcohol dehydrogenase enzyme (ADH; EC 1.1.1.1) from Drosophila melanogaster and D. simulans, with different primary structures, have been subjected to kinetic studies of ethanol oxidation at five temperatures. Two amino acid replacements in the N-terminal region which distinguish the ADH of D. simulans from the three ADH allozymes of D. melanogaster gene...

متن کامل

Molecular analysis of alcohol dehydrogenase electromorphs in wild type and transformed Drosophila melanogaster.

The protein expressed by the alcohol dehydrogenase locus (Adh) in D. melanogaster comprises a small group of electromorphs. We are able to study the expression of these electromorphs by electrophoretic separation and subsequent probing of blots of the separated polypeptides with antiserum for alcohol dehydrogenase (ADH). In the present study we have utilized this technique to study and compare ...

متن کامل

Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and Drosophila simulans.

Drosophila melanogaster and its sibling species, Drosophila simulans, differ in expression of the enzyme alcohol dehydrogenase (ADH). Adult melanogaster flies that are homozygous for the Slow allozyme have approximately twice the level of ADH activity and crossreacting material as simulans adults. There is no corresponding difference in ADH mRNA, however, so this difference in ADH protein level...

متن کامل

Interspecific DNA transformation in Drosophila.

A DNA fragment that includes the wild-type rosy (ry+) gene of Drosophila melanogaster has been introduced by microinjection into the germ line of the reproductively isolated species Drosophila simulans and incorporated into the D. simulans genome. Transformation was mediated by the transposable element P, which occurs in the genome of most natural populations of D. melanogaster but not in D. si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 1987